产品展示

  • 体外诊断
  • 蛋白质和抗体
  • 材料科学
  • 生命科学
  • 分析科学
  • 高端化学
  • 抑制剂和化合物库

联系我们

  • 联系人:阿拉丁客服部
  •  话:400-620-6333
  •  真:86-21-50323701
  •  箱:2547091763@qq.com
  •  址:上海市浦东新区新金桥路36号上海国际财富中心南塔16F
公司动态

【阿拉丁】烷基磺酰氟化物作为SuFEx点击中心催化转化的最新进展

2024-07-05

烷基磺酰氟化物作为SuFEx点击中心催化转化的最新进展

摘要

        由于磺酰氟分子在不同领域的广泛应用,寻找新的有效方法来获取磺酰氟化物具有相当大的研究意义。在这种情况下,氟化硫(VI)交换(SuFEx)点击化学正在成为最突出的此类方法之一。开发用于制备烷基磺酰氟的新型催化方法已成为有机合成中特别感兴趣的领域。与在芳基磺酰氟的合成方面已经取得的实质性进展相比,制备脂肪族磺酰氟化物的方法仍然较少探索。本文综述了烷基磺酰氟合成四种不同策略的最新进展:(i)光氧化还原催化,(ii)电催化,(iii)过渡金属催化,(iv)有机催化。这些反应产生不同的磺酰氟化物,这些氟化物可以作为生物活性分子和结构单元,适用于进一步的SuFEx转化。

 

介绍

       磺酰氟是化学合成的重要组成部分,在材料科学、化学生物学和药物发现中具有广泛的应用。1-3 从2014年开始,Sharpless及其同事证明,氟化硫(VI)交换(SuFEx)反应是一种新兴的点击反应,具有有机硫氟化物无与伦比的反应性和稳定性。4-6 由于叠氮化物和炔烃的连接能力以及温和铜催化的利用,第一代点击反应,即Huisgen叠氮-炔环加成反应已成为一种有用的工具。7-10 点击反应可以在耐水和耐氧条件下工作,从而产生出色的产物收率。与众所周知的磺酰氯相比,磺酰氟在酸性和碱性条件下更为稳定。11

 

        含硫(VI)化合物已广泛应用于制药12-15、 材料科学16和高分子科学17。磺酰氟在生物化学中的有趣应用包括抑制蛋白酶和作为生物探针(图1,(a)部分) 。18-20二芳基磺酰氟化物和二芳基硅烷基醚之间的SuFEx反应可生成聚磺酸盐-SuFEx聚合物,由于其高效性,在聚合物科学中具有独特的应用21-24。要合成所需的功能性分子,传统方法需要多步骤过程(图1,(b)部分)。此外,需要设计良好且易于获得的前驱体来应用催化过程。例如,乙烯磺酰氟(ESF,H2C=CHSO2F)已被引入作为制备各种氮基、氧基和碳基亲核试剂的良好迈克尔受体,可用于合成官能化烷基磺酰氟化物(图1,(c)部分)。25-27

 

        在这篇综述中,重点介绍了新的方法;包括光氧化还原催化、电催化、过渡金属催化和有机催化;已开发用于合成烷基磺酰氟化物(图1,(d)部分)。

图 1. (a)具有代表性的生物活性烷基磺酰氟的化学结构。 (b)用于合成烷基磺酰氟的传统方法。 (c) Sharpless千克级合成 ESF。 (d)本综述重点介绍的催化合成方法。

 

结论与展望

       我们研究了通过碳-碳或碳-杂原子键的形成及其与合适偶联剂的氟化物交换(SuFEx)反应合成烷基磺酰氟的过程。通过光氧化催化、电催化、过渡金属催化和有机催化,SO2F官能团的反应在活化后可获得多种碳水化合物和杂环。我们相信,这些方法将有助于扩大用于制药和农用化学品研究的含磺酰氟化合物库。

 

阿拉丁:https://www.aladdin-e.com

 

参考文献

1.Lange W, Müller E. 1930. über Aryl‐fluorsulfonate, Ar. O. So 2 F. Ber. dtsch. Chem. Ges. A/B. 63(9):2653-2657. https://doi.org/10.1002/cber.19300630946

2.Steinkopf W. 1927. über Aromatische Sulfofluoride. J. Prakt. Chem. 117(1):1-82. https://doi.org/10.1002/prac.19271170101

3.Steinkopf W, Jaeger P. 1930. über Aromatische Sulfofluoride. II. Mitteilung. J. Prakt. Chem. 128(1):63-88. https://doi.org/10.1002/prac.19301280104

4.Dong J, Krasnova L, Finn MG, Sharpless KB. 2014. Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry. Angew. Chem., Int. Ed. 53(36):9430-9448. https://doi.org/10.1002/anie.201309399

5.Li S, Wu P, Moses JE, Sharpless KB. 2017. Multidimensional SuFEx Click Chemistry: Sequential Sulfur(VI) Fluoride Exchange Connections of Diverse Modules Launched From An SOF4 Hub. Angew. Chem., Int. Ed. 56(11):2903-2908. https://doi.org/10.1002/anie.201611048

6.Gao B, Li S, Wu P, Moses JE, Sharpless KB. 2018. SuFEx Chemistry of Thionyl Tetrafluoride (SOF4) with Organolithium Nucleophiles: Synthesis of Sulfonimidoyl Fluorides, Sulfoximines, Sulfonimidamides, and Sulfonimidates. Angew. Chem., Int. Ed. 57(7):1939-1943. https://doi.org/10.1002/anie.201712145

7.Huisgen R. 1963. 1,3-Dipolar Cycloadditions. Past and Future. Angew. Chem., Int. Ed. 2(10):565-598. https://doi.org/10.1002/anie.196305651

8.Kolb HC, Finn MG, Sharpless KB. 2001. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem., Int. Ed. 40(11):2004-2021. https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5

9.Torn?e CW, Christensen C, Meldal M. 2002. Peptidotriazoles on Solid Phase:? [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 67(9):3057-3064. https://doi.org/10.1021/jo011148j

10.Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. 2002. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem., Int. Ed. 41(14):2596-2599. https://onlinelibrary.wiley.com/doi/10.1002/1521-3773(20020715)41:14%3C2596::AID-ANIE2596%3E3.0.CO;2-4

11.Suter CM. 1944. The Organic Chemistry of Sulfur: Tetracovalent Sulfur Compounds. Wiley: New York, NY. 453–572.

12.Majumdar KC, Mondal S. 2011. Recent Developments in the Synthesis of Fused Sultams. Chem. Rev. 111(12):7749-7773. https://doi.org/10.1021/cr1003776

13.Zhao C, Rakesh K, Ravidar L, Fang W, Qin H. 2019. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: A critical review. Eur. J. Med. Chem. 162679-734. https://doi.org/10.1016/j.ejmech.2018.11.017

14.Meanwell NA. 2011. Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design. J. Med. Chem. 54(8):2529-2591. https://doi.org/10.1021/jm1013693

15.Scott KA, Njardarson JT. 2018. Analysis of US FDA-Approved Drugs Containing Sulfur Atoms. Top. Curr. Chem. (Z). 376(1): https://doi.org/10.1007/s41061-018-0184-5

16.(a) Hou J, Lu L, Wang L, Ohma A, Ren D, Feng X, Li Y, Li Y, Ootani I, Han X, Ren W, He X, Nitta Y, Ouyang M. 2020. Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nat. Commun. 11(1):5100. https://doi.org/10.1038/s41467-020-18868-w (b) Ugata Y, Chen Y, Sasagawa S, Ueno K, Watanabe M, Mita H, Shimura J, Nagamine M, Dokko K. 2022. Eutectic Electrolytes Composed of LiN(SO2F)2 and Sulfones for Li-Ion Batteries. J. Phys. Chem. C. 126(24):10024-10034. https://doi.org/10.1021/acs.jpcc.2c02922

17.Dong J, Sharpless KB, Kwisnek L, Oakdale JS, Fokin VV. 2014. SuFEx-Based Synthesis of Polysulfates. Angew. Chem., Int. Ed. 53(36):9466-9470. https://doi.org/10.1002/anie.201403758

18.Alapafuja SO, Nikas SP, Bharathan IT, Shukla VG, Nasr ML, Bowman AL, Zvonok N, Li J, Shi X, Engen JR, et al. 2012. Sulfonyl Fluoride Inhibitors of Fatty Acid Amide Hydrolase. J. Med. Chem. 55(22):10074-10089. https://doi.org/10.1021/jm301205j

19.Shishido Y, Tomoike F, Kimura Y, Kuwata K, Yano T, Fukui K, Fujikawa H, Sekido Y, Murakami-Tonami Y, Kameda T, et al. 2017. A covalent G-site inhibitor for glutathione S-transferase Pi (GSTP1-1). Chem. Commun. 53(81):11138-11141. https://doi.org/10.1039/c7cc05829b

20.Aguilar B, Amissah F, Duverna R, S. Lamango N. 2011. Polyisoprenylation Potentiates the Inhibition of Polyisoprenylated Methylated Protein Methyl Esterase and the Cell Degenerative Effects of Sulfonyl Fluorides. CCDT. 11(6):752-762. https://doi.org/10.2174/156800911796191015

21.Gao B, Zhang L, Zheng Q, Zhou F, Klivansky LM, Lu J, Liu Y, Dong J, Wu P, Sharpless KB. 2017. Bifluoride-catalysed sulfur(VI) fluoride exchange reaction for the synthesis of polysulfates and polysulfonates. Nat. Chem. 9(11):1083-1088. https://doi.org/10.1038/nchem.2796

22.Wang M, Jin H, Chen X, Lin B, Yang H. 2019. A sulfur(vi) fluoride exchange click chemistry approach towards main chain liquid crystal polymers bearing sulfate ester groups. Polym. Chem. 10(26):3657-3664. https://doi.org/10.1039/c9py00577c

23.Li S, Li G, Gao B, Pujari SP, Chen X, Kim H, Zhou F, Klivansky LM, Liu Y, Driss H, et al. 2021. SuFExable polymers with helical structures derived from thionyl tetrafluoride. Nat. Chem. 13(9):858-867. https://doi.org/10.1038/s41557-021-00726-x

24.Kim H, Zhao J, Bae J, Klivansky LM, Dailing EA, Liu Y, Cappiello JR, Sharpless KB, Wu P. 2021. Chain-Growth Sulfur(VI) Fluoride Exchange Polycondensation: Molecular Weight Control and Synthesis of Degradable Polysulfates. ACS Cent. Sci. 7(11):1919-1928. https://doi.org/10.1021/acscentsci.1c01015

25.Chen Q, Mayer P, Mayr H. 2016. Ethenesulfonyl Fluoride: The Most Perfect Michael Acceptor Ever Found?. Angew. Chem., Int. Ed. 55(41):12664-12667. https://doi.org/10.1002/anie.201601875

26.Meng Y, Wang S, Fang W, Xie Z, Leng J, Alsulami H, Qin H. 2020. Ethenesulfonyl Fluoride (ESF) and Its Derivatives in SuFEx Click Chemistry and More. Synthesis. 52(05):673-687. https://doi.org/10.1055/s-0039-1690038

27.Zheng Q, Dong J, Sharpless KB. 2016. Ethenesulfonyl Fluoride (ESF): An On-Water Procedure for the Kilogram-Scale Preparation. J. Org. Chem. 81(22):11360-11362. https://doi.org/10.1021/acs.joc.6b01423

28.Xu R, Xu T, Yang M, Cao T, Liao S. 2019. A rapid access to aliphatic sulfonyl fluorides. Nat. Commun. 10(1): https://doi.org/10.1038/s41467-019-11805-6

29.Zhang X, Fang W, Lekkala R, Tang W, Qin H. 2020. An Easy, General and Practical Method for the Construction of Alkyl Sulfonyl Fluorides. Adv. Synth. Catal. 362(16):3358-3363. https://doi.org/10.1002/adsc.202000515

30.Zhang X, Qin H. 2022. A General Procedure for the Construction of 2-Alkyl-Substituted Vinyl Sulfonyl Fluoride. Org. Lett. 24(50):9311-9315. https://doi.org/10.1021/acs.orglett.2c03936

31.Zhong T, Yi J, Chen Z, Zhuang Q, Li Y, Lu G, Weng J. 2021. Photoredox-catalyzed aminofluorosulfonylation of unactivated olefins. Chem. Sci. 12(27):9359-9365. https://doi.org/10.1039/d1sc02503a

32.Chen Z, Zhou X, Yi J, Diao H, Chen Q, Lu G, Weng J. 2022. Catalytic Decarboxylative Fluorosulfonylation Enabled by Energy-Transfer-Mediated Photocatalysis. Org. Lett. 24(13):2474-2478. https://doi.org/10.1021/acs.orglett.2c00459

33.Zhang H, Li S, Zheng H, Zhu G, Liao S, Nie X. 2022. Photocatalytic fluorosulfonylation of aliphatic carboxylic acid NHPI esters. Org. Chem. Front. 9(18):4854-4860. https://doi.org/10.1039/d2qo00861k

34.Wang P, Zhang H, Zhao M, Ji S, Lin L, Yang N, Nie X, Song J, Liao S. 2022. Radical Hydro‐Fluorosulfonylation of Unactivated Alkenes and Alkynes. Angew. Chem., Int. Ed. 61(39): https://doi.org/10.1002/anie.202207684

35.Wu X, Chu L, Qing F. 2013. Silver-Catalyzed Hydrotrifluoromethylation of Unactivated Alkenes with CF3SiMe3. Angew. Chem., Int. Ed. 52(8):2198-2202. https://doi.org/10.1002/anie.201208971

36.Nie X, Xu T, Song J, Devaraj A, Zhang B, Chen Y, Liao S. 2021. Radical Fluorosulfonylation: Accessing Alkenyl Sulfonyl Fluorides from Alkenes. Angew. Chem., Int, Ed. 60(8):3956-3960. https://doi.org/10.1002/anie.202012229

37.(a) Wang P, Zhang H, Nie X, Xu T, Liao S. 2022. Photoredox catalytic radical fluorosulfonylation of olefins enabled by a bench-stable redox-active fluorosulfonyl radical precursor. Nat. Commun. 13(1):3370. https://doi.org/10.1038/s41467-022-31089-7 (b) Zhang W, Li H, Li X, Zou Z, Huang M, Liu J, Wang X, Ni S, Pan Y, Wang Y. 2022. A practical fluorosulfonylating platform via photocatalytic imidazolium-based SO2F radical reagent. Nat. Commun. 13(1):3515. https://doi.org/10.1038/s41467-022-31296-2

38.Erchinger JE, Hoogesteger R, Laskar R, Dutta S, Hümpel C, Rana D, Daniliuc CG, Glorius F. 2023. EnT-Mediated N-S Bond Homolysis of a Bifunctional Reagent Leading to Aliphatic Sulfonyl Fluorides. J. Am. Chem. Soc. 145(4):2364-2374. https://doi.org/10.1021/jacs.2c11295

39.Francke R, Little RD. 2014. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem. Soc. Rev. 43(8):2492. https://doi.org/10.1039/c3cs60464k

40.Meyer TH, Choi I, Tian C, Ackermann L. 2020. Powering the Future: How Can Electrochemistry Make a Difference in Organic Synthesis?. Chem. 6(10):2484-2496. https://doi.org/10.1016/j.chempr.2020.08.025

41.Liu J, Lu L, Wood D, Lin S. 2020. New Redox Strategies in Organic Synthesis by Means of Electrochemistry and Photochemistry. ACS Cent. Sci. 6(8):1317-1340. https://doi.org/10.1021/acscentsci.0c00549

42.Laudadio G, Bartolomeu AdA, Verwijlen LMHM, Cao Y, de Oliveira KT, No?l T. 2019. Sulfonyl Fluoride Synthesis through Electrochemical Oxidative Coupling of Thiols and Potassium Fluoride. J. Am. Chem. Soc. 141(30):11832-11836. https://doi.org/10.1021/jacs.9b06126

43.Pupo G, Vicini AC, Ascough DMH, Ibba F, Christensen KE, Thompson AL, Brown JM, Paton RS, Gouverneur V. 2019. Hydrogen Bonding Phase-Transfer Catalysis with Potassium Fluoride: Enantioselective Synthesis of β-Fluoroamines. J. Am. Chem. Soc. 141(7):2878-2883. https://doi.org/10.1021/jacs.8b12568

44.Chen D, Nie X, Feng Q, Zhang Y, Wang Y, Wang Q, Huang L, Huang S, Liao S. 2021. Electrochemical Oxo‐Fluorosulfonylation of Alkynes under Air: Facile Access to β‐Keto Sulfonyl Fluorides. Angew. Chem., Int. Ed. 60(52):27271-27276. https://doi.org/10.1002/anie.202112118

45.Feng Q, Fu Y, Zheng Y, Liao S, Huang S. 2022. Electrochemical Synthesis of β-Keto Sulfonyl Fluorides via Radical Fluorosulfonylation of Vinyl Triflates. Org. Lett. 24(20):3702-3706. https://doi.org/10.1021/acs.orglett.2c01336

46.Zhang X, Huang Y, Qin H, Baoguo Z, Rakesh KP, Tang H. 2021. Copper-Promoted Conjugate Addition of Carboxylic Acids to Ethenesulfonyl Fluoride (ESF) for Constructing Aliphatic Sulfonyl Fluorides. ACS Omega. 6(40):25972-25981. https://doi.org/10.1021/acsomega.1c02804

47.Liu Y, Lin Q, Xiao Z, Zheng C, Guo Y, Chen Q, Liu C. 2019. Zinc‐Mediated Intermolecular Reductive Radical Fluoroalkylsulfination of Unsaturated Carbon–Carbon Bonds with Fluoroalkyl Bromides and Sulfur Dioxide. Chem.—Eur. J. 25(7):1824-1828. https://doi.org/10.1002/chem.201805526

48.Li X, Chen HJ, Wang W, Ma M, Chen Y, Li Y, Pullarkat SA, Leung P. 2019. Palladacycle promoted asymmetric hydrophosphination of α,β-unsaturated sulfonyl fluorides. J. Organomet. Chem. 899120912. https://doi.org/10.1016/j.jorganchem.2019.120912

49.Chen H, Hu Z, Qin H, Tang H. 2021. A novel three-component reaction for constructing indolizine-containing aliphatic sulfonyl fluorides. Org. Chem. Front. 8(6):1185-1189. https://doi.org/10.1039/d0qo01430c

50.Alexakis A, B?ckvall JE, Krause N, Pàmies O, Diéguez M. 2008. Enantioselective Copper-Catalyzed Conjugate Addition and Allylic Substitution Reactions. Chem. Rev. 108(8):2796-2823. https://doi.org/10.1021/cr0683515

51.Hong Y, Gandeepan P, Mannathan S, Lee W, Cheng C. 2014. Alkene-Assisted Nickel-Catalyzed Regioselective 1,4-Addition of Organoboronic Acid to Dienones: A Direct Route to All-Carbon Quaternary Centers. Org. Lett. 16(11):2806-2809. https://doi.org/10.1021/ol500838h

52.Moku B, Fang W, Leng J, Kantchev EAB, Qin H. 2019. Rh(I)–Diene-Catalyzed Addition of (Hetero)aryl Functionality to 1,3-Dienylsulfonyl Fluorides Achieving Exclusive Regioselectivity and High Enantioselectivity: Generality and Mechanism. ACS Catal. 9(11):10477-10488. https://doi.org/10.1021/acscatal.9b03640

53.Sidera M, Fletcher SP. 2015. Rhodium-catalysed asymmetric allylic arylation of racemic halides with arylboronic acids. Nat. Chem. 7(11):935-939. https://doi.org/10.1038/nchem.2360

54.Takaya Y, Ogasawara M, Hayashi T, Sakai M, Miyaura N. 1998. Rhodium-Catalyzed Asymmetric 1,4-Addition of Aryl- and Alkenylboronic Acids to Enones. J. Am. Chem. Soc. 120(22):5579-5580. https://doi.org/10.1021/ja980666h

55.Qin H, Zheng Q, Bare GAL, Wu P, Sharpless KB. 2016. A Heck–Matsuda Process for the Synthesis of β‐Arylethenesulfonyl Fluorides: Selectively Addressable Bis‐electrophiles for SuFEx Click Chemistry. Angew. Chem., Int. Ed. 55(45):14155-14158. https://doi.org/10.1002/anie.201608807

56.Barrow AS, Smedley CJ, Zheng Q, Li S, Dong J, Moses JE. 2019. The growing applications of SuFEx click chemistry. Chem. Soc. Rev. 48(17):4731-4758. https://doi.org/10.1039/c8cs00960k

57.Moku B, Fang W, Leng J, Li L, Zha G, Rakesh K, Qin H. 2019. Rh-Catalyzed Highly Enantioselective Synthesis of Aliphatic Sulfonyl Fluorides. iScience. 21695-705. https://doi.org/10.1016/j.isci.2019.10.051

58.Colby DA, Bergman RG, Ellman JA. 2010. Rhodium-Catalyzed C?C Bond Formation via Heteroatom-Directed C?H Bond Activation. Chem. Rev. 110(2):624-655. https://doi.org/10.1021/cr900005n

59.Deb A, Bag S, Kancherla R, Maiti D. 2014. Palladium-Catalyzed Aryl C–H Olefination with Unactivated, Aliphatic Alkenes. J. Am. Chem. Soc. 136(39):13602-13605. https://doi.org/10.1021/ja5082734

60.De Almeida MV, Barton DHR, Bytheway I, Ferreira JA, Hall MB, Liu W, Taylor DK, Thomson L. 1995. Preparation and Thermal Decomposition of N,N'-Diacyl-N,N'-Dialkoxyhydrazines: Synthetic Applications and Mechanistic Insights. J. Am. Chem. Soc. 117(17):4870-4874. https://doi.org/10.1021/ja00122a018

61.Fabry DC, Zoller J, Raja S, Rueping M. 2014. Combining Rhodium and Photoredox Catalysis for C?H Functionalizations of Arenes: Oxidative Heck Reactions with Visible Light. Angew. Chem., Int. Ed. 53(38):10228-10231. https://doi.org/10.1002/anie.201400560

62.Wang S, Li C, Leng J, Bukhari SNA, Qin H. 2018. Rhodium(iii)-catalyzed Oxidative Coupling of N-Methoxybenzamides and Ethenesulfonyl fluoride: a C–H Bond Activation Strategy for the Preparation of 2-Aryl ethenesulfonyl fluorides and Sulfonyl fluoride Substituted γ-Lactams. Org. Chem. Front. 5(9):1411-1415. https://doi.org/10.1039/c7qo01128h

63.Yi J, Zhou X, Chen Q, Chen Z, Lu G, Weng J. 2022. Copper-catalyzed direct decarboxylative fluorosulfonylation of aliphatic carboxylic acids. Chem. Commun. 58(67):9409-9412. https://doi.org/10.1039/d2cc03221j

64.Li Y, Chang X, Xiong Q, Dong X, Wang C. 2021. Cu-catalyzed endo-selective asymmetric 1,3-dipolar cycloaddition of azomethine ylides with ethenesulfonyl fluorides: Efficient access to chiral pyrrolidine-3-sulfonyl fluorides. Chin. Chem. Lett. 32(12):4029-4032. https://doi.org/10.1016/j.cclet.2021.05.063

65.Chen J, Zhang Y, Zhu D, Zhang X, Yan M. 2022. Construction of Chiral Quaternary Carbon Stereocenters by Asymmetric Michael Addition of 4‐Amido‐5‐hydroxylpyrazoles to Ethylene Sulfonyl Fluoride. Asian J. Org. Chem. 11(4): https://doi.org/10.1002/ajoc.202200063

66.Chen J, Zhu D, Zhang X, Yan M. 2021. Highly Enantioselective Addition of N-2,2,2-Trifluoroethylisatin Ketimines to Ethylene Sulfonyl Fluoride. J. Org. Chem. 86(3):3041-3048. https://doi.org/10.1021/acs.joc.0c02511

67.Zhu D, Zhang X, Yan M. 2021. Enantioselective Addition of Azlactones to Ethylene Sulfonyl Fluoride via Dual Catalysis. Org. Lett. 23(11):4228-4232. https://doi.org/10.1021/acs.orglett.1c01193

68.Chen J, Huang B, Wang Z, Zhang X, Yan M. 2019. Asymmetric Conjugate Addition of Ethylene Sulfonyl Fluorides to 3-Amido-2-oxindoles: Synthesis of Chiral Spirocyclic Oxindole Sultams. Org. Lett. 21(23):9742-9746. https://doi.org/10.1021/acs.orglett.9b03911

69.Lee SB, Park JH, Bae HY. 2022. Hydrophobic Amplification Enabled High‐Turnover Phosphazene Superbase Catalysis. ChemSusChem. 15(15): https://doi.org/10.1002/cssc.202200634

70.Grdadolnik J, Merzel F, Avbelj F. 2017. Origin of hydrophobicity and enhanced water hydrogen bond strength near purely hydrophobic solutes. Proc. Natl. Acad. Sci. U.S.A. 114(2):322-327. https://doi.org/10.1073/pnas.1612480114

71.Delany EG, Fagan C, Gundala S, Zeitler K, Connon SJ. 2013. Aerobic oxidation of NHC-catalysed aldehyde esterifications with alcohols: benzoin, not the Breslow intermediate, undergoes oxidation. Chem. Commun. 49(58):6513. https://doi.org/10.1039/c3cc42597e

72.Park JH, Lee SB, Koo BJ, Bae HY. 2022. β‐Aminosulfonyl Fluorides via Water‐Accelerated N‐Heterocyclic Carbene Catalysis. ChemSusChem. 15(18): https://doi.org/10.1002/cssc.202201000

73.Bae HY, Song CE. 2015. Unprecedented Hydrophobic Amplification in Noncovalent Organocatalysis “on Water”: Hydrophobic Chiral Squaramide Catalyzed Michael Addition of Malonates to Nitroalkenes. ACS Catal. 5(6):3613-3619. https://doi.org/10.1021/acscatal.5b00685

74.Pirrung MC. 2006. Acceleration of Organic Reactions through Aqueous Solvent Effects. Chem.—Eur. J. 12(5):1312-1317. https://doi.org/10.1002/chem.200500959

75.Park JH, González-Montiel GA, Cheong PH, Bae HY. 2023. Alkyl Sulfonyl Fluorides Incorporating Geminal Dithioesters as SuFEx Click Hubs via Water-Accelerated Organosuperbase Catalysis. Org. Lett. 25(7):1056-1060. https://doi.org/10.1021/acs.orglett.2c04224

76.Frye NL, Daniliuc CG, Studer A. 2022. Radical 1‐Fluorosulfonyl‐2‐alkynylation of Unactivated Alkenes. Angew. Chem., Int. Ed. 61(12): https://doi.org/10.1002/anie.202115593

77.Shavnya A, Coffey SB, Hesp KD, Ross SC, Tsai AS. 2016. Reaction of Alkyl Halides with Rongalite: One-Pot and Telescoped Syntheses of Aliphatic Sulfonamides, Sulfonyl Fluorides, and Unsymmetrical Sulfones. Org. Lett. 18(22):5848-5851. https://doi.org/10.1021/acs.orglett.6b02894

78.Liu Y, Wu H, Guo Y, Xiao J, Chen Q, Liu C. 2017. Trifluoromethylfluorosulfonylation of Unactivated Alkenes Using Readily Available Ag(O2CCF2SO2F) and N‐Fluorobenzenesulfonimide. Angew. Chem., Int. Ed. 56(48):15432-15435. https://doi.org/10.1002/anie.201709663

79.Lin Q, Liu Y, Xiao Z, Zheng L, Zhou X, Guo Y, Chen Q, Zheng C, Liu C. 2019. Intermolecular oxidative radical fluoroalkylfluorosulfonylation of unactivated alkenes with (fluoroalkyl)trimethylsilane, silver fluoride, sulfur dioxide and N-fluorobenzenesulfonimide. Org. Chem. Front. 6(4):447-450. https://doi.org/10.1039/c8qo01192c

80.Ma Z, Liu Y, Ma X, Hu X, Guo Y, Chen Q, Liu C. 2022. Aliphatic sulfonyl fluoride synthesis via reductive decarboxylative fluorosulfonylation of aliphatic carboxylic acid NHPI esters. Org. Chem. Front. 9(4):1115-1120. https://doi.org/10.1039/d1qo01655e

81.Tang L, Yang Y, Wen L, Yang X, Wang Z. 2016. Catalyst-free radical fluorination of sulfonyl hydrazides in water. Green Chem. 18(5):1224-1228. https://doi.org/10.1039/c5gc02755a

82.Talko A, Barbasiewicz M. 2018. Nucleophilic Fluorination with Aqueous Bifluoride Solution: Effect of the Phase-Transfer Catalyst. ACS Sustainable Chem. Eng. 6(5):6693-6701. https://doi.org/10.1021/acssuschemeng.8b00489

83.Rojas JJ, Croft RA, Sterling AJ, Briggs EL, Antermite D, Schmitt DC, Blagojevic L, Haycock P, White AJP, Duarte F, et al. 2022. Amino-oxetanes as amide isosteres by an alternative defluorosulfonylative coupling of sulfonyl fluorides. Nat. Chem. 14(2):160-169. https://doi.org/10.1038/s41557-021-00856-2

84.Croft RA, Mousseau JJ, Choi C, Bull JA. 2018. Lithium‐Catalyzed Thiol Alkylation with Tertiary and Secondary Alcohols: Synthesis of 3‐Sulfanyl‐Oxetanes as Bioisosteres. Chem.—Eur. J. 24(4):818-821. https://doi.org/10.1002/chem.201705576

联系方式
Q Q:
微信扫一扫

地址:上海市浦东新区新金桥路36号上海国际财富中心南塔16F 联系人:阿拉丁客服部 电话:400-620-6333 传真:86-21-50323701
 Copyright © 上海阿拉丁生化科技股份有限公司 版权所有 2024 XML 技术支持: 盖德化工网   食品商务网