背景介绍
作者使用模板导向流体组件的方法来制备高度组织和对齐的SWCNTs薄膜,它采用了光刻图案模板辅助浸渍涂层[12–14],[18]。SWCNTs在预先设计的光刻胶通道之间直接组装在亲水性表面上,形成微和纳米尺度的高起源SWCNTs侧网络。等离子体处理可以提高流体组装的质量,增加悬浮键和表面亲水氢氧根官能团的数量。图1显示了模板引导射流组装方法的详细程序。图1A-C显示了SiO2基板经过等离子体处理,然后用光刻胶旋涂,并通过光刻技术(分别用于微纳米级图案的光刻和电子束光刻)进行图案化。图1D展示了使用浸涂机将预先图案化的基板首先垂直浸入SWCNT去离子(DI)水溶液中,然后以恒定的拉速度逐渐从溶液中提起的过程。图1E和1C显示了在去除光刻胶后,在SiO2衬底上的微/纳米级沟槽和SWCNT网络之间形成的SWCNT网络图案。图1G-J显示了SiO2/Si衬底上的厘米级、毫米级、微米级和纳米级组装的SWCNT网络。
在这篇文章中,作者提出了一种高度组织SWCNT网络的模板引导流体组装方法。使用光刻图案化模板辅助浸涂,使用光刻图案模板辅助浸涂方法,SWCNTs直接组装在预先设计的微纳米级光刻胶通道之间,形成密集排列的、具有不同几何形状的SWCNTs侧网络,其特征尺寸从150纳米到数百微米尺度不等。这些高度组织的微纳米级SWCNT网络结构可以集成到各种传感器件架构中。模板导向流体装配技术的室温和晶圆级缩放兼容性提供了在大范围内可复制的可能性。在这方面,本文展示了一种高性能光电探测器和一种新型逻辑器件,基于SWCNT和硅的可扩展异质结,其输出电流可以完全由光和电输入控制。我们还介绍了一种基于SWCNT的化学传感器,该传感器可以通过使用TEMPO作为催化剂功能化的SWCNT网络上发生的氧化还原反应有效地检测H2S气体。
参考文献
1.Iijima S. 1991. Helical microtubules of graphitic carbon. Nature. 354(6348):56-58.
2.Avouris P. 2002. Molecular Electronics with Carbon Nanotubes. Acc. Chem. Res. 35(12):1026-1034.
3.Dai H. 2002. Carbon Nanotubes: Synthesis, Integration, and Properties. Acc. Chem. Res. 35(12):1035-1044.
4.Yao Z, Kane CL, Dekker C. High-Field Electrical Transport in Single-Wall Carbon Nanotubes. Phys. Rev. Lett. 84(13):2941-2944.
5.White CT, Todorov TN. 1998. Carbon nanotubes as long ballistic conductors. Nature. 393(6682):240-242.
6.Pop E, Mann D, Wang Q, Goodson K, Dai H. 2006. Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature. Nano Lett. 6(1):96-100.
7.Lu JP. 1997. Elastic properties of single and multilayered nanotubes. Journal of Physics and Chemistry of Solids. 58(11):1649-1652.
8.Kong J. 2000. Nanotube Molecular Wires as Chemical Sensors. 287(5453):622-625.
9.Wen L, Li F, Cheng H. 2016. Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices. Adv.Mater. 28(22):4306-4337.
10.Fan S. 1999. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties. 283(5401):512-514.
11.Shi Kam NW, O'Connell M, Wisdom JA, Dai H. 2005. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proceedings of the National Academy of Sciences. 102(33):11600-11605.
12.Jaber-Ansari L, Hahm MG, Somu S, Sanz YE, Busnaina A, Jung YJ. 2009. Mechanism of Very Large-Scale Assembly of SWNTs in Template Guided Fluidic Assembly Process. J. Am. Chem. Soc. 131(2):804-808.
13.Xiong X, Chen C, Ryan P, Busnaina AA, Jung YJ, Dokmeci MR. 2009. Directed assembly of high density single-walled carbon nanotube patterns on flexible polymer substrates. Nanotechnology. 20(29):295302.
14.Jaber-Ansari L, Hahm MG, Kim TH, Somu S, Busnaina A, Jung YJ. 2009. Large scale highly organized single-walled carbon nanotube networks for electrical devices. Appl. Phys. A. 96(2):373-377.
15.Kim YL, Jung HY, Park S, Li B, Liu F, Hao J, Kwon Y, Jung YJ, Kar S. 2014. Voltage-switchable photocurrents in single-walled carbon nanotube? silicon junctions for analog and digital optoelectronics. Nature Photon. 8(3):239-243.
16.Jung HY, Kim YL, Park S, Datar A, Lee H, Huang J, Somu S, Busnaina A, Jung YJ, Kwon Y. 2013. High-performance H2S detection by redox reactions in semiconducting carbon nanotube-based devices. Analyst. 138(23):7206.
17.Jung HY, Araujo PT, Kim YL, Jung SM, Jia X, Hong S, Ahn CW, Kong J, Dresselhaus MS, Kar S, et al. 2014. Sculpting carbon bonds for allotropic transformation through solid-state re-engineering of sp2 carbon. Nat Commun. 5(1):
18.Kim YL, Li B, An X, Hahm MG, Chen L, Washington M, Ajayan PM, Nayak SK, Busnaina A, Kar S, et al. 2009. Highly Aligned Scalable Platinum-Decorated Single-Wall Carbon Nanotube Arrays for Nanoscale Electrical Interconnects. ACS Nano. 3(9):2818-2826.
19.Almeida VR, Barrios CA, Panepucci RR, Lipson M. 2004. All-optical control of light on a silicon chip. Nature. 431(7012):1081-1084.
20.Liu L, Kumar R, Huybrechts K, Spuesens T, Roelkens G, Geluk E, de Vries T, Regreny P, Van Thourhout D, Baets R, et al. 2010. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nature Photon. 4(3):182-187.